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Introduction

• The system will focus on the 53 MHz fundamental 
component of the beam current to determine 
position.

• Linearity is one of the more difficult requirements 
for the system to meet.

• Must measure closed orbit positions of protons 
and pbars with both species present in the pickup.

• Must insure that the system maintains its 
resolution throughout the sampling and processing 
path.



Why 53 MHz component?

• Need to focus on a frequency that doesn’t have a 
magnitude null for some arbitrary Tevatron filling 
pattern.

• RF system operates solely at 53 MHz with no 
visible change plans.

• Consequently, 53 MHz signal is only a function of 
total beam intensity and bunch width (will vary by 
factor of 2 as bunch narrows through the ramp).

• DC component would be better, but BPMs do not 
have any DC response.



Linearity

• In order to meet the 1.5% linearity requirement, 
the system must have a 40dB linear dynamic 
range.

• This precludes the use of most analog active 
devices upstream of the digitizer, especially 
analog mixers (3rd order intermodulation term in 
most mixers not better that 20dB).

• Without frontend mixers, the digitizers must 
digitize the 53 MHz component of the beam 
directly.



Sampling 53 MHz component

• Sample above Nyquist frequency (>106 MHz) and analog 
filter higher frequency components that can alias into 
passband.

• Sample below Nyquist frequency (60 MHz < sample freq 
< 85 MHz) and analog bandpass filter components that can 
alias into passband.  Image of 53 MHz component will be 
translated to new frequency (sample freq – 53 MHz).

• Filter must reduce all images that could interfere with 53 
MHz component by 65dB to meet resolution requirements.
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Signal to Noise and Distortion
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For rms position error better than 33µm, SINAD better than 55dB.

For rms position error better than 7µm, SINAD better than 69dB.



Digitizer Specifications

• Digitizers with at least 14 bits usually have 
SINAD better than 72dB for a single sample.

• We achieve better SINAD by averaging multiple 
samples of a single bunch (whether by fast 
sampling or stretching the bunch signal out in time 
with analog filters).

• SINAD is directly proportional to signal level.  
We must carefully monitor our dynamic range of 
the signal.



Signal Dynamic Range

• Try to reduce the dynamic range seen by the 
digitizers to maximize SINAD.

• Variable gain amplifiers introduce non-linearity 
(and calibration errors) into the system.

• We can reduce total dynamic range for common 
operating conditions with proper analog filters.

• We have a minimum dynamic range of 6dB due to 
change in 53 MHz component of beam as beam 
gets narrower up the ramp.



Signal Dynamic Range
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Plot showing the transient signal seen by the digitizers after a 50 MHz wide 
bandpass filter centered at 53 MHz.  The three traces represent single bunch, train 
of 12 bunches and 30 uncoalesced bunches at 980 GeV.



Signal Dynamic Range
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Plot showing the transient signal seen by the digitizers after a 5 MHz wide 
bandpass filter centered at 53 MHz.  The three traces represent single bunch, train 
of 12 bunches and 30 uncoalesced bunches at 980 GeV.



Benefits of Narrowband Analog 
Filter

• Keeps dynamic range low over different operating 
conditions.

• Allows more samples of the bunch improving the 
SINAD through averaging.

• Makes the comparison of uncoalesced bunch 
positions and coalesced bunch position more 
consistent for better tuning reliability.

• Disadvantage:  Interference of signal from bunch 
to bunch for 2.5 MHz spacing.



Downconvert and Decimate
• Impossible to get raw data from digitizer through a 

backplane data bus at the digitizer sample rate.  We need to 
reduce the data rate.

• We are interested in the power around the 53 MHz 
component of the beam frequency over a narrow 
bandwidth.

• Take the digitized data and multiply the data by the 
function cos(ωt) where ω is the 53 MHz RF frequency, or 
the image of the RF frequency after undersampling.

• This translates the power in the 53 MHz line from an 
intermediate frequency to DC.



Downconvert and Decimate

• After frequency translation, the signal is digitally 
filtered to desired bandwidth.

• This bandwidth is much smaller than the original 
analog bandwidth.  Having this data represented at 
the digitizer sampling rate is grossly oversampled.

• The data can be decimated to a rate that a 
processor can handle without losing any 
information in the new signal bandwidth.



Digital Downconvert and Filter
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Process Gain

• It is important to preserve the SINAD through the 
digital filtering process.

• A single bunch produces a spectrum that has equal 
amplitude signals at all of the revolution 
harmonics over the bandwidth of the analog filter.

• The digital filter allows only one revolution line to 
pass.  The signal is reduced by the number of 
revolution lines contained in the passband of the 
analog filter.

• An analog filter with a bandwidth of 5MHz 
contains about 100 revolution lines.



Process Gain

• To preserve the SINAD of the digitizers, the 
digital filter must have enough extra bits to 
drop the noise floor with the loss in signal.

• For the example of the 5 MHz passband, the 
noise would need to drop by about 40dB.  
The filter would need 8 more bits than the 
digitizer to preserve the digitizer SINAD. 



Basic Hardware Architecture 
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Measuring Pbar Closed Orbit in 
Presence of Protons

• Need to measure around the ring.
• Pbar-proton time spacing is not conducive 

to time differentiation around the ring for all 
cogging values.

• Find a solution for measuring pbars that 
doesn’t compromise proton position 
resolution.



Pbar Signal De-embedding

• De-embedding process similar to cross-talk 
calibration in network analyzers.

• Focuses on frequency resolution instead of time 
resolution.

• Takes advantage of linear, time-invariant property 
of passive systems.

• Works with narrow analog bandwidth and does 
not force the analog frontend to include switches 
and amplifiers when changing from coalesced 
mode to uncoalesced mode.



Linear Time-Invariant Systems

• The hardware for the BPM system up to the 
digitizer is composed of passive components 
(striplines, cables, lumped element filters).  This 
makes the system linear time-invariant (LTI).

• LTI systems have the property that when vin(t) 
produces vout(t) and Vin(t) produces Vout(t) then 
a*vin(t) + b*Vin(t) produces a*vout(t) + 
b*Vout(t) (superposition).

• They also have the property that vin(t-τ) produces 
vout(t- τ) (time-invariance).



Linear Time-Invariant Systems

• Superposition implies that the output can be 
constructed by separating and summing its 
response to different independent sources.

• Time-invariance and superposition make 
exponential functions eigenfunctions of the 
system.  This means that different frequency 
components don’t mix.



Separation of pbars and protons

• Proton and pbar 
signals are linearly 
independent sources.

• Output signals can be 
deconstructed into 
pbar and proton 
components.
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Two fixed transmitter sources

• Imagine two fixed 
location transmitters 
radiating inside the 
BPM.

• All signals are LTI 
and everything works 
ideally.
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Solving for pbar only term
• Solve for the pbar 

component of the signal on 
the pbar pickup.

• Pbar component is a linear 
function of the total signal 
from the pbar plate and the 
total signal from the proton 
plate.

• Technique relies on the 
stability of the proton 
component calibration 
ratio as a function of 
position.

2
,

,

, 1 ydirectivit

V
V
V

V
V

uprotout
protuprtotout

protupbarout
upbarout

pbarupbarout −

−

=



Transmission Line Model
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Non-idealities in Linear Process

• Coupling between BPM plates creates non-
linear relationship between proton-pbar 
signal ratio and position.

• Unmatched transitions and terminations 
corrupt symmetry for coupling analysis.

• Beam angle through BPM could change, 
affecting ratio of beam signal seen at pbar 
end of pickup relative to proton end.



Pbar Position Measurement 
Options

• Ratio of pbar signal to proton signal on a single plate stable enough as 
a function of beam position for operational requirements.

• Solve for independent eigenvectors whose eigenvalues are linear 
functions of beam position (some kA+B).

• Calibrate system with protons only on desired proton orbit 
(uncoalesced) immediately prior to measurement of pbar orbits.

• Have separate time differentiation processing modules placed at a 
subset of locations around the ring for measuring pbars.  (Enough to 
verify proper separation).

• New paradigm for BPM processing using large front-end analog 
bandwidth and time differentiation of proton & pbar signals.



Effect of High Intensity Pbars on 
Proton Position
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Plot showing the effect of pbars on the proton position 
measurement.  The best case scenario means that the directivity 
of the A plate is in phase with the directivity of the B plate. 
Worst case is the directivities are counterphased.



Other Specifications

• Digital filter must be capable of 10Hz resolution 
bandwidth, so that position variations due to 
synchrotron motion is averaged out.

• The system needs to handle position samples from 
each BPM (protons only) at a rate of 47 kHz for 
up to 8196 samples.  This is the turn-by-turn 
requirement.

• The system must be capable of continuous closed 
orbit measurements at a 500 Hz rate (except when 
doing turn-by-turn measurements).



Summary of Hardware 
Specifications

• De-embed proton and pbar signals using 
crosstalk calibration.

• Use narrowband analog front-end filter 
centered at RF frequency.

• Undersampling is acceptable for narrow 
analog bandwidth.

• Use digital down-convert techniques. 
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